Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response.

نویسندگان

  • Cristina Benedetti
  • Cole M Haynes
  • Yun Yang
  • Heather P Harding
  • David Ron
چکیده

Perturbation of the protein-folding environment in the mitochondrial matrix selectively upregulates the expression of nuclear genes encoding mitochondrial chaperones. To identify components of the signal transduction pathway(s) mediating this mitochondrial unfolded protein response (UPR(mt)), we first isolated a temperature-sensitive mutation (zc32) that conditionally activates the UPR(mt) in C. elegans and subsequently searched for suppressors by systematic inactivation of genes. RNAi of ubl-5, a gene encoding a ubiquitin-like protein, suppresses activation of the UPR(mt) markers hsp-60::gfp and hsp-6::gfp by the zc32 mutation and by other manipulations that promote mitochondrial protein misfolding. ubl-5 (RNAi) inhibits the induction of endogenous mitochondrial chaperone encoding genes hsp-60 and hsp-6 and compromises the ability of animals to cope with mitochondrial stress. Mitochondrial morphology and assembly of multi-subunit mitochondrial complexes of biotinylated proteins are also perturbed in ubl-5(RNAi) worms, indicating that UBL-5 also counteracts physiological levels of mitochondrial stress. Induction of mitochondrial stress promotes accumulation of GFP-tagged UBL-5 in nuclei of transgenic worms, suggesting that UBL-5 effects a nuclear step required for mounting a response to the threat of mitochondrial protein misfolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines

Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the ...

متن کامل

Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line

Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...

متن کامل

The Effect of Resistance Training and Berberine Chloride on the Apoptosis-Related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-Poisoned Rats

Introduction: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of unfolded protein response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the ef...

متن کامل

Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner.

Accumulation of aberrant proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response pathway that helps the cell to survive under these stress conditions. Herp is a mammalian ubiquitin domain protein, which is strongly induced by the unfolded protein response. It is involved in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 174 1  شماره 

صفحات  -

تاریخ انتشار 2006